Graphitized biogas-derived carbon nanofibers as anodes for lithium-ion batteries
نویسندگان
چکیده
منابع مشابه
Membranes of MnO Beading in Carbon Nanofibers as Flexible Anodes for High-Performance Lithium-Ion Batteries
Freestanding yet flexible membranes of MnO/carbon nanofibers are successfully fabricated through incorporating MnO2 nanowires into polymer solution by a facile electrospinning technique. During the stabilization and carbonization processes of the as-spun membranes, MnO2 nanowires are transformed to MnO nanoparticles coincided with a conversion of the polymer from an amorphous state to a graphit...
متن کاملSilicon nanoparticles encapsulated in hollow graphitized carbon nanofibers for lithium ion battery anodes.
Silicon (Si) is a promising material for lithium ion battery (LIB) anodes due to its high specific capacity. To overcome its shortcomings such as insulation property and large volume change during the charge-discharge process, a novel hybrid system, Si nanoparticles encapsulated in hollow graphitized carbon nanofibers, is studied. First, electrospun polyacrylonitrile (PAN)-Si hybrid nanofibers ...
متن کاملHeteroatom Doped-Carbon Nanospheres as Anodes in Lithium Ion Batteries
Long cycle performance is a crucial requirement in energy storage devices. New formulations and/or improvement of "conventional" materials have been investigated in order to achieve this target. Here we explore the performance of a novel type of carbon nanospheres (CNSs) with three heteroatom co-doped (nitrogen, phosphorous and sulfur) and high specific surface area as anode materials for lithi...
متن کاملPipe-Wire TiO2-Sn@Carbon Nanofibers Paper Anodes for Lithium and Sodium Ion Batteries.
Metallic tin has been considered as one of the most promising anode materials both for lithium (LIBs) and sodium ion battery (NIBs) because of a high theoretical capacity and an appropriate low discharge potential. However, Sn anodes suffer from a rapid capacity fading during cycling due to pulverization induced by severe volume changes. Here we innovatively synthesized pipe-wire TiO2-Sn@carbon...
متن کاملLow-cost carbon-silicon nanocomposite anodes for lithium ion batteries
The specific energy of the existing lithium ion battery cells is limited because intercalation electrodes made of activated carbon (AC) materials have limited lithium ion storage capacities. Carbon nanotubes, graphene, and carbon nanofibers are the most sought alternatives to replace AC materials but their synthesis cost makes them highly prohibitive. Silicon has recently emerged as a strong ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electrochimica Acta
سال: 2016
ISSN: 0013-4686
DOI: 10.1016/j.electacta.2016.10.170